Search results for " categorization"

showing 10 items of 54 documents

A segmentation algorithm for noisy images

2005

International audience; This paper presents a segmentation algorithm for gray-level images and addresses issues related to its performance on noisy images. It formulates an image segmentation problem as a partition of a weighted image neighborhood hypergraph. To overcome the computational difficulty of directly solving this problem, a multilevel hypergraph partitioning has been used. To evaluate the algorithm, we have studied how noise affects the performance of the algorithm. The alpha-stable noise is considered and its effects on the algorithm are studied. Key words : graph, hypergraph, neighborhood hypergraph, multilevel hypergraph partitioning, image segmentation and noise removal.

020203 distributed computingHypergraphMathematics::Combinatorics[ INFO ] Computer Science [cs]Computer sciencebusiness.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technologyImage segmentation[INFO] Computer Science [cs]020202 computer hardware & architectureComputer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)SegmentationComputer vision[INFO]Computer Science [cs]Artificial intelligencebusinessAlgorithmMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Automatic detection of hemangiomas using unsupervised segmentation of regions of interest

2016

In this paper we compare the performances of three automatic methods of identifying hemangioma regions in images: 1) unsupervised segmentation using the Otsu method, 2) Fuzzy C-means clustering (FCM) and 3) an improved region growing algorithm based on FCM (RG-FCM). For each image, the starting point of the algorithms is a rectangular region of interest (ROI) containing the hemangioma. For computing the performances of each method, the ROIs had been manually labeled in 2 classes: pixels of hemangioma and pixels of non-hemangioma. The computed scores are given separately for each image, as well as global performances across all ROIs for both classes. The best classification of non-hemangioma…

0301 basic medicineComputer scienceScale-space segmentation02 engineering and technologyOtsu's methodHemangioma03 medical and health sciencessymbols.namesakeMinimum spanning tree-based segmentationRegion of interestHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation-based object categorizationbusiness.industryPattern recognitionImage segmentationmedicine.diseaseStatistical classification030104 developmental biologyRegion growingsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2016 International Conference on Communications (COMM)
researchProduct

Unsupervised low-key image segmentation using curve evolution approach

2013

Low-key images widely exist in imaging-based systems such as space telescopes, medical imaging equipment, machine vision systems. Unsupervised low-key image segmentation is an important process for image analysis or digital measurement in these applications. In this paper, a novel active contour model with the probability density function (PDF) of gamma distribution for image segmentation is proposed. The flexible gamma distribution is used to describe both of the heterogeneous foreground and dark background in a low-key image. Besides, an unsupervised curve initialization method is also designed in this paper, which helps to accelerate the convergence speed of curve evolution. The effectiv…

Active contour modelbusiness.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationInitializationPattern recognitionImage segmentationImage textureComputer Science::Computer Vision and Pattern RecognitionCurve fittingGamma distributionComputer visionArtificial intelligencebusinessMathematics2013 IEEE International Conference on Mechatronics (ICM)
researchProduct

Olfactory categorization: a developmental study.

2012

International audience; This study examined the ability of children to classify fruit and flower odors. We asked four groups of children (4-11 years of age) and a group of adults to identify, categorize, and evaluate the edibility, liking, and typicality of 12 fruit and flower odors. Results showed an increase in interindividual agreement with age for the taxonomic (fruit/flower) and function-based (edible/nonedible) categories but not for the hedonic component. So, it seems that this hedonic component is not the explicit basis for this increase in interindividual agreement when categorizing an odor as a fruit/flower odor or as being edible or nonedible. An age-related trend was also observ…

AdultMaleOlfactory perceptionOlfactory categorizationEstheticsLavenderConcept FormationHuman Development[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionExperimental and Cognitive PsychologyFlowers050105 experimental psychologyDevelopmental psychologyToxicologyDevelopmental and Educational PsychologyHumans0501 psychology and cognitive sciencesChildAgedAge differences05 social sciencesfood and beveragesRecognition PsychologyMiddle AgedClassificationOlfactory PerceptionCategorizationOdorChild PreschoolFruitLinear ModelsFemaleFrancePlants EdiblePsychology[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition050104 developmental & child psychology
researchProduct

Bagging and Boosting with Dynamic Integration of Classifiers

2000

One approach in classification tasks is to use machine learning techniques to derive classifiers using learning instances. The co-operation of several base classifiers as a decision committee has succeeded to reduce classification error. The main current decision committee learning approaches boosting and bagging use resampling with the training set and they can be used with different machine learning techniques which derive base classifiers. Boosting uses a kind of weighted voting and bagging uses equal weight voting as a combining method. Both do not take into account the local aspects that the base classifiers may have inside the problem space. We have proposed a dynamic integration tech…

Boosting (machine learning)Training setbusiness.industryComputer sciencemedia_common.quotation_subjectWeighted votingMachine learningcomputer.software_genreBoosting methods for object categorizationRandom subspace methodComputingMethodologies_PATTERNRECOGNITIONEnsembles of classifiersVotingAdaBoostArtificial intelligenceGradient boostingbusinesscomputermedia_common
researchProduct

Iteratively Learning a Liver Segmentation Using Probabilistic Atlases: Preliminary Results

2016

This works deals with the concept of liver segmentation by using a priori information based on probabilistic atlases and segmentation learning based of previous steps. A probabilistic atlas is here understood as a probability or membership map that tells how likely is that a point belongs to a shape drawn from the shape distribution at hand. We devise a procedure to segment Perfusion Magnetic Resonance liver images that combines both: a probabilistic atlas of the liver and a segmentation algorithm based on global information of previous simpler segmentation steps, local information from close segmented slices and finally a mathematical morphology procedure, namely viscous reconstruction, to…

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentation02 engineering and technologyIterative reconstructionMathematical morphology030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineSegmentationComputer visionComputingMethodologies_COMPUTERGRAPHICSmedicine.diagnostic_testSegmentation-based object categorizationbusiness.industryProbabilistic logicMagnetic resonance imagingPattern recognitionImage segmentationComputer Science::Computer Vision and Pattern Recognition020201 artificial intelligence & image processingArtificial intelligencebusinessPerfusion2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
researchProduct

A new image segmentation approach using community detection algorithms

2015

Image segmentation has an important role in many image processing applications. Several methods exist for segmenting an image. However, this technique is still a relatively open topic for which various research works are regularly presented. With the recent developments on complex networks theory, image segmentation techniques based on graphs has considerably improved. In this paper, we present a new perspective of image segmentation, by applying three of the most efficient community detection algorithms, Louvain, infomap and stability optimization based on the louvain algorithm, and we extract communities in which the highest modularity feature is achieved. After we show that this measure …

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technology[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]03 medical and health sciences0302 clinical medicine[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]Image textureMinimum spanning tree-based segmentation020204 information systems0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Computer visionSegmentationComputingMilieux_MISCELLANEOUSbusiness.industrySegmentation-based object categorization[INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM]Pattern recognitionImage segmentationRegion growingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithm030217 neurology & neurosurgery2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)
researchProduct

Efficient Multi-scale Patch-Based Segmentation

2015

The objective of this paper is to devise an efficient and accurate patch-based method for image segmentation. The method presented in this paper builds on the work of Wu et al. [14] with the introduction of a compact multi-scale feature representation and heuristics to speed up the process. A smaller patch representation along with hierarchical pruning allowed the inclusion of more prior knowledge, resulting in a more accurate segmentation. We also propose an intuitive way of optimizing the search strategy to find similar voxel, making the method computationally efficient. An additional approach at improving the speed was explored with the integration of our method with Optimised PatchMatch…

Computer scienceFeature (computer vision)Segmentation-based object categorizationbusiness.industryFeature vectorScale-space segmentationPattern recognitionSegmentationPruning (decision trees)Image segmentationArtificial intelligencebusinessHeuristics
researchProduct

Extracting cloud motion from satellite image sequences

2004

This paper present a new technique for the estimation of cloud motion, using a sequence of infrared satellite images. It can be considered a challenging task due to the complexity of phenomena implied, as non-linear events and a non-rigid motion. In this circumstances most motion models are not suitable and new algorithms have to be developed. We propose a novel method, combining an Automatic Multilevel Thresholding for image segmentation, a Block Matching Algorithm (BMA) and a best candidate block search along with a vector median regularization.

Computer scienceSegmentation-based object categorizationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processingPattern recognitionImage segmentationThresholdingImage textureMotion estimationComputer visionArtificial intelligencebusinessBlock-matching algorithm7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002.
researchProduct

Feature extraction and correlation for time-to-impact segmentation using log-polar images

2004

In this article we present a technique that allows high-speed movement analysis using the accurate displacement measurement given by the feature extraction and correlation method. Specially, we demonstrate that it is possible to use the time to impact computation for object segmentation. This segmentation allows the detection of objects at different distances.

Computer scienceSegmentation-based object categorizationbusiness.industryFeature (computer vision)Feature extractionScale-space segmentationComputer visionSegmentationPattern recognitionArtificial intelligenceImage segmentationbusinessDisplacement (vector)
researchProduct